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In Situ Eddy Analysis in a High-Resolution Ocean Climate Model
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Fig. 1. Visualization of the Okubo-Weiss field from the Gulf Stream (left) and the Agulhas Current (right). These were created with in

situ eddy analysis in the MPAS-Ocean (Model for Prediction Across Scales – Ocean) model for a 15km grid cell resolution simulation.
Green regions indicate strong rotation, while blue regions indicate strong shear. The boundary between the regions define an eddy.

Abstract— An eddy is a feature associated with a rotating body of fluid, surrounded by a ring of shearing fluid. In the ocean, eddies
are 10 to 150 km in diameter, are spawned by boundary currents and baroclinic instabilities, may live for hundreds of days, and
travel for hundreds of kilometers. Eddies are important in climate studies because they transport heat, salt, and nutrients through the
world’s oceans and are vessels of biological productivity. The study of eddies in global ocean-climate models requires large-scale,
high-resolution simulations. This poses a problem for feasible (timely) eddy analysis, as ocean simulations generate massive amounts
of data, causing a bottleneck for traditional analysis workflows. To enable eddy studies, we have developed an in situ workflow for the
quantitative and qualitative analysis of MPAS-Ocean, a high-resolution ocean climate model, in collaboration with the ocean model
research and development process. Planned eddy analysis at high spatial and temporal resolutions will not be possible with a post-
processing workflow due to various constraints, such as storage size and I/O time, but the in situ workflow enables it and scales well
to ten-thousand processing elements.

Index Terms—In situ analysis, online analysis, mesoscale eddies, ocean modeling, climate modeling, simulation, feature extraction,
feature analysis, high performance computing, supercomputing, software engineering, collaborative development, revision control.

1 INTRODUCTION

A traditional, post-processing analysis workflow to produce an eddy
census per simulated day is not feasible for large-scale, high-fidelity
ocean-climate simulations due to the end-to-end time involved and file
storage sizes. In response, we provide an alternative workflow that
enables eddy analysis for this ocean model use case, and highlight:

1. The development of an in situ eddy census workflow that pro-
vides results directly from a simulation run.

2. Implementation of scalable Okubo-Weiss [48] and connected
components for generating eddy censuses in MPAS-Ocean
(Model for Prediction Across Scales-Ocean).

3. New ocean-climate science results that verify the generation of
eddies in high-resolution ocean models.

4. Performance results of our in situ eddy census compared to the
climate scientists’ post-processing workflow.

• Jonathan Woodring, Mark Petersen, John Patchett, and James Ahrens are
with Los Alamos National Laboratory, USA. Email: woodring@lanl.gov,
mpetersen@lanl.gov, patchett@lanl.gov, ahrens@lanl.gov.

• Andre Schmeißer and Hans Hagen are with Computer Graphics and HCI
Group, University of Kaiserslautern, Germany. Email:
schmeisser@itwm.fhg.de, hagen@informatik.uni-kl.de.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

5. Description of our analysis development process, which is peer-
reviewed due to being part of the simulation model.

2 MOTIVATION

Computational models are an important tool in climate science to as-
sess the risk of greenhouse gas emissions to future generations [38].
The ocean plays an important role in climate change, including car-
bon and heat uptake at the sea surface, fresh water fluxes from melting
ice caps, and changing currents. The analysis of ocean model data is
critically important in climate change research.

In simulations of the earth’s oceans, the variables of velocity, tem-
perature, salinity, and mass (the prognostic variables) are computed
at every time step using discretized forms of the conservation equa-
tions. These prognostic variables comprise the state of the system,
fully characterizing the ocean model at a particular time. A suite of
analysis computations are conducted on the ocean state to gain scien-
tific insights from ocean simulations.

Eddy analysis is one of a large number of analysis procedures ap-
plied to the ocean state [11]. Eddies are ubiquitous features in the
world’s oceans. Many are created by the shear of boundary jets like
the Gulf Stream and Agulhas retroflection (Figure 1), where the cur-
rents meander and pinch off eddies on each side. Others spawn due
to baroclinic instability, in regions where pressure and density gradi-
ents are not aligned. The Southern Ocean, which surrounds Antarctica
(Figure 2), contains the largest concentration of eddies in the world
[28]. This is because waters are colder in the south than the north, and
constant density surfaces (isopycnals) are extremely tilted, leading to
a large source of potential energy for the baroclinic instability. Eddy
formation occurs spontaneously where this is present, and converts the
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Fig. 2. Visualization of the kinetic energy in MPAS-Ocean. The eddies
can be qualitatively seen here, and only appear in the model at high-
resolutions (15 km grid cell resolution or finer).

potential energy of tilted isopycnals into kinetic energy of the rotation
of eddies [40, 44].

Even though individual eddies occur on scales of 10-150 km, their
cumulative effects have large and long-ranging consequences on the
earth’s climate. In the Southern Ocean, eddies transport heat towards
the pole, flattening the isopycnals. The strength of large-scale circu-
lations in the northern hemisphere, such as the Atlantic Meridional
Overturning Circulation (AMOC) are sensitive to the eddy dynamics
in the Southern Ocean [24, 50]. Winds over the Southern Ocean have
become stronger with a warming climate [1], which may lead to long-
ranging effects on ocean circulation [14, 20], and eddies play a key
role in these dynamics [10]. Eddies have even been evaluated for their
relationship to increased fish populations [54].

The diameter of eddies vary from 100 km at 20° latitude, down to
60 km or less at higher latitudes. This is determined by the Rossby
radius of deformation, a fundamental length scale associated with the
earth’s rotation and the vertical density profile [40, 44]. Discretized
ocean models need a minimum of four grid cells to resolve an eddy’s
diameter, so high resolution (15 km or smaller grid cells) is required
to study the effects of eddies on global climate. This research, and the
associated analysis, is restricted to scalable, high-performance ocean
models that run efficiently on large computing platforms.

To perform these studies at scale, the Model for Prediction Across
Scales (MPAS) is a climate model framework that supports many com-
ponents: ocean, atmosphere, sea ice, and land ice. It uses unstructured
horizontal meshes based on Voronoi tessellations, which has appli-
cations in regional climate modeling [31]. The vertical grid is arbi-
trary Lagrangian-Eulerian to reduce spurious mixing [29]. The ocean-
climate module, MPAS-Ocean is developed at Los Alamos National
Laboratory and it has been shown to have nearly linear scalability to
the 15 km grid cell resolution needed to resolve eddies, on many thou-
sands of cores, seen in Figure 3. MPAS-Ocean has been validated
against analytic solutions and other models in numerous test cases,
from idealized to realistic [29]. It has been shown to produce an ocean
climate similar to observations, and with performance similar to other
ocean models [31].

Climate analysis has been primarily done via post-processing,
where the ocean state is saved as a checkpoint restart file. These files
are manually transferred to a local file system, often the analyst’s desk-
top computer, and then, analysis and visualization is conducted with
customized code on a single or a few processors. This workflow is un-
sustainable as climate simulations move to high spatial and temporal
resolutions. Ten years ago, a typical checkpoint restart file was 100

Fig. 3. MPAS-Ocean has nearly linear scalability up to 10,000 process-
ing elements. The 15 km grid cell resolution is necessary for mesoscale
eddy formation in the model. The 60 km and 30 km grid resolutions are
shown for comparison.

Fig. 4. Adding post-processing time for daily eddy censuses to the total
time taken by the simulation. The primary lack of scalability is due to
writing the simulation state to storage and then reading it back from
storage. This is an ideal timing for post-processing, as we have not
measured the time that it takes the analyst to copy the files, open them,
and run it on a single-core analysis code.

MB for a one-degree global grid, while today it is 7 GB for a typical

resolution of 15 km grid cells (approximately 1/8th of a degree).
For global eddy analysis, we need to perform daily eddy censuses,

which totals to approximately 2.5 TB of storage for a simulated year
and 250 TB for 100 years. Figure 4 shows the time taken for one simu-
lated year of daily censuses, using a post-processing workflow on a su-
percomputer where the analysis scales to the same processor count as
the simulation. It shows the total end-to-end time, from starting a sim-
ulation to receiving eddy analysis results, where post-processing does
not scale beyond a certain number of processing elements and asymp-
totes to a constant amount of time. It is constant because we have
saturated our parallel filesystem capability (I/O bandwidth to storage)
and cannot scale any further.

In particular for 15 km grid cells, the eddy analysis itself takes ap-
proximately 4 times as long as the simulation (i.e., 8 hours vs. 2 hours
for a total of 10 hours) of the simulation at 8k cores. This means it
always takes a constant 8 hours on our supercomputers, even with a
parallel file system and a parallelized analysis code. We haven’t even
considered the time that it would take to copy files from archive, the
manual labor, or analysis processing on fewer cores (a desktop com-
puter), which is typical in a climate, post-processing workflow. This
is because parallel filesystems are a shared resource, and large-scale
data sets, especially ones as large as 250 TB, cannot remain stored for
very long because they rob resources from other users.



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2467411, IEEE Transactions on Visualization and Computer Graphics

Future simulation state files will grow as large as 100 GB and 1.5
TB for 5 km and 1 km global grids, respectively, and the time for
analysis will grow even worse. Furthermore, analysis needs to be con-
ducted at a time frequency suitable to the scientific need, such as every
simulated day or hour, rather than dictated by fixed I/O, desktop com-
puter, or “an analyst’s ability to copy files and open them” constraints.
These are the primary arguments for moving to an in situ climate anal-
ysis workflow, in particular for studying eddies in this paper.

In situ analysis methods are able to take full advantage of mesh
partitioning, compute cycles, and parallelism that is tested and efficient
in the simulation by directly accessing the state and circumventing
reading and writing from the parallel file system. This is assuming
we can perform the analysis on an instantaneous or accumulated state
over time, as is the case with eddy censuses. A resulting data analysis
write, which is created directly from the simulation, may be the same
size as a checkpoint restart, but the data products have information
targeting the scientific questions at hand, so that expensive I/O time is
well-spent towards meeting specific goals. This does reduce the ability
to do post-hoc, exploratory analysis, but alternatives are being sought
out to get around this limitation [3, 41].

More importantly, moving to in situ methods forces a significant
change in the climate analysis development process. Post-processing
analysis and development created by individual scientists tends to have
poor version control, documentation, efficiency, and reproducibility
due to lack of peer-review and sharing. An in situ workflow brings
analysis development under the umbrella of the standards of the com-
putational model, such that it has the same process as the simulation
code: with planning, testing, documentation, upkeep, and it is avail-
able for external peer-review. This team-based development [4] for
both model and analysis can be difficult to transition to, due to a cul-
tural shift from a separation of capabilities (“stove-piping”) to cross-
cutting, but it is drastically critical for long-term climate studies, peer-
reviewed science, and policy decisions.

3 REQUIREMENTS AND BACKGROUND

To meet our scientific goals, we had to break with the traditional post-
processing used by climate scientists, to enable large-scale ocean eddy
analysis. We used in situ processing, which increases the scientists’
productivity by producing data artifacts directly from a simulation
that are readily analyzable, rather than waiting for post-processing.
Additionally, we desired an analysis repository, which would con-
tain the analysis routines and produce simulation executables. Finally,
we required that the analysis code base had to be integrated into the
simulation development path, such that analyses would be under the
same software engineering practices and scientific peer-review, as the
model.

3.1 Requirements

There are several desired science outcomes for eddy analysis which
drive the design for a scalable analysis workflow.

1. Ocean mesoscale eddies (referred to as eddies, hereafter) are im-
portant to study to understand for ocean dynamics.

2. To verify and validate ocean models and real-world ocean data,
daily eddy censuses must be saved from ocean climate models
so they can be statistically compared over space and time.

3. Eddy analysis code must be available for internal and external
peer-review and subjected to modern software development pro-
cesses.

4. The analysis must be timely and not burden the analyst. This
means that the analysis should not significantly extend the length
of time-to-results from the simulation time or require the analyst
to wait long periods of time.

This leads to performance and implementation design corollaries of
the primary design requirements.

1. Eddies must be generated from the simulation state. Eddies are
not a “first-order” variable in a climate simulation, rather a de-
rived quantity that is calculated.

2. Since, we require censuses of eddies over time, they must be ex-
tracted as a feature (an individual component that can be labeled)
from derived data to uniquely identify eddies in space and time.

3. Due to the physical scale of the simulation (15 km grid cells or
finer), the analysis needs to have good strong and weak scaling
properties, matching the simulation performance.

3.2 Background

We build on work performed by Williams et al. [47–49] leveraging the
Okubo-Weiss field to identify eddies in the global ocean. This previous
work was done in a post-processing paradigm which leads to a limited
ability to study eddy censuses over time. Within their series of papers,
they developed an eddy analysis workflow. They also describe several
other ocean eddy detection methods, in addition to Okubo-Weiss.

Others have also studied methods for visualizing and extracting vor-
tical, eddy-like structures. Shafii et al. [35], Stegmaier et al. [37], and
Schneider et al. [34] used the Lambda-2 criterion, which is similar to
the Okubo-Weiss and Q-criterion, to build applications for visualizing
vortices in turbulent flow applications. Kendall et al. [16, 17] provide
climate flow visualization techniques, using a combination of parallel
frameworks and geometric feature detection. Silver and Wang [36]
and Tzeng et al. [43] provide methods for tracking vortical structures
in time-varying volumetric flow fields. Yu et al. [53] performed in situ
visualizations to study a variety of phenomena in 3-D flow fields. Post
et al. [30] provide a survey of flow visualization techniques to provide
feature extraction and tracking.

Science-enabling analysis and research has been applied to differ-
ent application domains, outside of flow and climate visualization,
and many are done in post-processing. Large-scale simulations have
been moving to in situ methods as their primary analysis mechanism
[2, 15, 42]. The primary reason is that I/O bandwidth to storage has not
kept pace with numerical computing data generation [39], and it is a
relatively expensive resource to scale-up compared to compute cycles
[18]. While it is possible to achieve performance with post-processing
[17, 26], the relative cost to achieve the same level of performance as
in situ analysis will typically be much higher. Also, it is problematic
to store large-scale data for later analysis on parallel filesystems, as
data sets are typically flushed to slower archival systems to make room
for other users, which decreases post-processing performance. Efforts
from Tikhonova et al. [41] and Ahrens et al. [3] have been working to-
wards alleviating the traditional drawback of in situ processing, which
has been the lack of exploratory, post-hoc analysis.

If we consider scaling back storage use to meet bandwidth costs and
constraints, scientific demands are not met. Simulation state changes
far more rapidly than a storage subsystem can capture it for later anal-
ysis. Therefore, the ratio of simulation state becomes too sparse, and
it is not possible to reach scientific analysis goals, such as daily eddy
censuses. Due to the relative costs of compute vs. I/O, it is easy to
imagine a scenario where the I/O takes longer than the actual compu-
tation for a model. Then, it becomes more efficient to restart the simu-
lation to generate necessary data artifacts, rather than save the data for
later analysis. We will show that we have reached that inflection point
for our large-scale ocean simulations.

Several projects have developed in situ tools for circumventing the
I/O bottleneck. Fabian et al. [9] enable in situ visualization and anal-
ysis with the Catalyst library based on ParaView. Likewise, Whit-
lock et al. [46] provide run-time visualization services with LibSim
based on VisIt. Vishwanath et al. [45] and Lofstead et al. [19] pro-
vide generalized in situ and alternative analysis workflows via their
GLEAN and ADIOS frameworks, respectively. Woodring et al. [51]
explored zero-copy data structures between simulations and visual-
ization frameworks to reduce the memory footprint of in situ analysis.
Nouanesengsy et al. [25] developed a generalized framework for triag-
ing large-scale simulation data at the source to produce reduced data
products.
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4 DESIGN AND IMPLEMENTATION

In this work, we focused on implementing eddy analysis for a parallel
global ocean model, the Model for Prediction Across Scales–Ocean
(MPAS-Ocean) version 3 (available at http://mpas-dev.github.io)
[31], and perform the eddy identification and censusing, described
earlier [29]. Eddy fields must be calculated from the simulation state,
since they are diagnostic rather than fundamental prognostic variables.
The identification of eddies is done in three steps: 1) computation of
OW parameter and thresholding of values, 2) finding connected com-
ponents of thresholded values, and 3) collecting identified eddies and
computing statistics such as volume, centroid, and average velocity.
The first step is data parallel, while steps two and three require inter-
process communication.

4.1 MPAS-Ocean Analysis Framework

Our case-study code, MPAS-Ocean, is developed for global high-
resolution climate simulations on supercomputing architectures. The
ocean model code utilizes a simulation framework (MPAS), which is
shared between other climate models, such as land ice, sea ice, and
atmosphere. Both the framework and models use collaborative devel-
opment using distributed revision control via git and github. Modifi-
cations of the model and framework code must go through an external
review process, such that any change must be accepted by different
developers that didn’t create the new feature.

MPAS-Ocean has been designed from the ground-up to support in
situ and post-processing analytics, and new analyses must be subjected
to the same review process as the simulation model. This code orga-
nization of the analysis capabilities has been purposely designed: the
goal is that collaborators, who may be unfamiliar with the rest of the
code, can be integrated into the development process to add new com-
putations to MPAS-Ocean, with the restriction that any new analysis
must maintain the same standards of performance, review, testing, and
documentation as the rest of the code. This team-based development
model is similar to other large-scale projects, such as VTK, ParaView,
and VisIt, and has been anecdotally shown to produce high-quality
software (millions of lines of code) from multiple researchers and de-
velopers. The key difference is that we are combining model and ana-
lytics expertise.

This development model does have the social drawback that it re-
quires cross-cutting and combining of capabilities, rather than a tradi-
tional separation and stove-piping. It requires a higher startup cost to
development through initial design and requirements planning, along
with learning the code base and development strategy of the core
MPAS-Ocean team. The benefit and primary reason for this cultural
change is that data analytic results will be used and trusted by hun-
dreds of researchers and policy makers for climate studies. Therefore,
the analytics need to be subject to the same scientific and development
standards as the model. This project development style is advocated
by Brooks [4], such that large projects need to draw upon a large set
of diverse talents to solve a problem, rather than in isolation.

To accommodate these needs, the analysis computations are sepa-
rated into individual analysis members, each with its own code mod-
ule, registry of variables, input deck (configuration), and timing inter-
vals for computation and output. To create a new analysis member, a
collaborator begins by copying the initial template files. By complet-
ing the appropriate sections of the initial code base, the collaborator
creates an analysis of the ocean state. At run-time, the ocean state is
passed to the analysis member with configuration metadata. All MPAS
framework mathematical and I/O operations are available within the
new analysis module. The simulation will automatically save any data
products created by the analysis member, and this is configurable at
run-time by the user.

When the analysis member is complete and tested, it must be
reviewed by external and/or core developers and merged using re-
vision control tools (a pull request), at https://github.com/MPAS-
Dev/MPAS-Release, using an iterative feedback process, which is
used by the core team for model and framework changes. This pa-
per is an example of this new collaborative development workflow be-
tween model and analytics researchers and developers. One author

had no previous experience with MPAS-Ocean, but added the Okubo-
Weiss analysis member over a summer. That code was externally re-
viewed, went through several review iterations by another author, who
was also new to the development process, was merged into the master
code base, and will be publicly available in the next release of MPAS-
Ocean.

MPAS-Ocean allows analysis implementations to be called in two
modes: in situ at specified frequencies (forward mode), or as a post-
processing step using the same analysis code (analysis mode). Al-
though in situ analysis is the preferred method, additional analysis is
sometimes required after the simulation is complete. Analysis mode
allows the user to use a list of checkpoint restart files as input data.
This guarantees that the same analysis code is used in both cases, un-
like typical post-processing analyses where the code is customized by
each researcher. In this paper, all performance and timing data was
produced this way, comparing in situ and post-processing using for-
ward and analysis modes, respectively.

4.2 Okubo-Weiss

We have chosen to use a method based on thresholds of the Okubo-
Weiss parameter, OW, to identify eddies in the ocean. This is
one of several methods for extracting an eddy from a flow field
[7, 23, 32, 47, 48]. We decided on Okubo-Weiss, rather than other
methods, since it scales well in parallel, unlike some of the other
methods such as detecting winding streamlines [32]. Okubo-Weiss
is the oceanographic term and two-dimensional equivalent of the Q-
criterion, that is common in visualizing fluid dynamics simulations
[27].

The OW parameter is computed on the velocity field as

OW = S2 −ω
2
, (1)

where S is the horizontal strain and ω the relative vorticity. Both can
directly be computed from the gradient tensor of the velocity field.
Tensor computations on arbitrary unstructured grids require a weak
formulation, where the normal velocities on cell edges are integrated
around the horizontal boundary of each cell [33, p. 23]. Only ad-
jacent cells need to be considered to compute this tensor. For cells
at the boundaries of computational domains, MPAS provides data
about neighboring cells in the form of halos (i.e., ghost cells), since it
spatially subdivides the computational domain among processing ele-
ments (PEs). Thus, our computation of the velocity gradient tensor is
fully data parallel without extra communication, and scales perfectly
with increasing number of PEs.

Individual cells are classified as being part of an eddy by threshold-
ing the values as

OW

σOW
≤ t, (2)

where σOW is the pre-computed standard-deviation of the Okubo-
Weiss field in the first simulation time step. t is the threshold value,
typically -0.2, which can be adjusted by the user prior to the simula-
tion run. This results in a field of booleans that describe which cells
belong to eddies, which is processed in the next step.

4.3 Connected Components

Based on the previous step, we compute the connected components of
the thresholded OW field. In turn, each connected component is con-
sidered to be a distinct eddy. This is a more challenging problem on a
distributed-memory architecture compared to shared-memory, as it re-
quires interprocess communication of eddy information across domain
boundaries to individual PEs to unify components. Harrison et al. [12]
describe an algorithm to efficiently compute connected components
in parallel in a general problem setting. They describe a multi-stage
Union-Find algorithm, finding connected components, first locally on
individual PEs, and then globally across all PEs, together with a spatial
partitioning scheme.

We have chosen to implement a simpler algorithm that allows us
to reuse the existing infrastructure for interprocess communication in
the MPAS framework. Our approach also works in two stages: 1) use
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the Union-Find algorithm to compute connected components locally
on each PE. This assigns to each cell, which was previously tagged as
belonging to an eddy, a globally unique ID. A unique ID per cell can
easily be computed as a combination of the local cell ID inside a PE’s
computational domain and the domain ID, incurring no communica-
tion overhead. Union-Find assigns a unique ID out of component cells
belonging to a local connected component.

Then in the second stage, we differ from Harrison et al.: 2) use
the MPAS communication infrastructure to iteratively communicate
(reduce) the IDs of physically adjacent eddy components (connected
across the computational domain boundaries) using halo communi-
cation to propagate IDs. Using reduction transitivity, this potentially
requires several rounds of halo communication for eddy IDs to con-
verge across PE domains to adjacent components (fully propagate).
The theoretical worst case would require a number of communication
rounds equal to the number of parallel computation domains. Thus,
our solution is asymptotically worse than the algorithm of Harrison et
al.

However due to the specific form of the connected components
(mostly localized cones that do not weave across the globe), this worst
case does not happen in practice. Experimental results have shown
that a few rounds are sufficient (typically, between 1 to 4 rounds).
The required communication overhead has not shown to be a problem
in our implementation, though it is the most significant time in eddy
finding. In our studies, the connected component phase takes 85% to
95% of the total eddy census time, and it can be replaced with a better
algorithm, such as Harrison et al., should the need arise.

4.4 Eddy Census

With the connected components computed, we finally compute statis-
tics about eddies to create a census. This is first performed on local
connected components (partial eddies) and then statistics are globally
aggregated. The statistics include the number of cells, the volume,
average position and velocity, and horizontal area at selected depths.

The resulting statistics of partial eddies on a each PE is reduced
across the global domain. All partial statistics that refer to the same
eddy are aggregated by appropriately adding their partial sums of vol-
umes, weighted centroids, etc. This results in a global list of eddies
for a single simulation time step that can be used to track eddies across
time, which are output to storage. The resulting eddy census data is
significantly reduced in size compared to the full simulation data set
(by three or more orders of magnitude). This size reduction allows
us to track eddies, afterwards, without creating an I/O bottleneck. A
future implementation may also track eddies in situ to utilize more
state information, such as volume overlap between eddies, for more
accurate eddy tracking.

5 OCEAN-CLIMATE RESULTS

The eddy analysis was applied to five-year MPAS-Ocean global sim-
ulations at three global resolutions, each with 60 km, 30 km, and
15 km grid cells. The resolution of eddies is strongly dependent on
grid cell size, as eddies typically require at least four grid cells across
the diameter, and eddy diameters range from 100 to tens of kilome-
ters. The 60 km, 30 km, and 15 km grids each yielded an average
daily eddy count of 8, 180, and 2080. Only the analysis results of
the high-resolution grid (15 km) is reported in this section. All eddy
census computations were conducted in situ daily, and a minimum of
100 grid cells per three-dimensional eddy was required to avoid spuri-
ous eddy observations. The output consists of a database of individual
eddy characteristics, from which these plots were directly created. The
ocean was forced with mean climatological winds [11] and restored to
climatological temperature and salinity at the surface. Other model
algorithms and physical parameterizations are described in [31].

While numerous studies characterize the eddies in a small region
[7, 8, 13, 23, 52], only a handful analyze eddies in global simula-
tions, due to the computing resources required for such an effort (high-
resolution over many simulated years). This is the first global eddy
characterization with MPAS-Ocean. Statistics may be directly com-
pared with a similar study with the POP model [28] and studies based
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Ocean global simulation with 15 km grid cells, and the vertical axis is
daily eddy observations per year.
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Eddy diameter increases equator-ward due to the Coriolis force, and no
eddies exist near the equator.
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Fig. 7. Eddy statistics averaged by one degree latitude/longitude bins:
eddy count, in daily eddy occurrences per year; diameter [km]; depth
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simulation with 15 km grid cells. The Gulf Stream, Kuroshio current
(near Japan), and Agulhas current (south of Africa) have the largest and
fastest eddies; the Southern Ocean has the largest number of eddies
and deepest eddies.

on satellite observations [5, 6]. The advantage of a global study is that
the same ocean model and analysis methods are used for all regions,
so that global comparisons may be made. Of particular interest are
the vertical characteristics of eddies in simulation, as satellite obser-
vations only obtain eddy data from the surface and observations with
depth are sparse.

In MPAS-Ocean, eddy diameters range from 25 km to 400 km, but
the great majority of eddies are between 50 km and 150 km (Figure
5). Eddy diameter is computed as the diameter of a disk with the same
area as the maximum horizontal eddy area. Eddy count drops off log-
arithmically with diameter and this distribution is nearly identical to
Figure 11a in the POP study [28]. The minimum eddy diameter is lim-
ited by the grid resolution at high latitudes, i.e., 40-60 km for 15 km
grid cells. The average depth of the eddy census shows that most ed-
dies occur in the top 500 m, there is a small population below 1000 m,
and a negligible number below 3000 m. This matches previous simu-
lations [28] and available observational data [13, 22].

Fig. 8. Comparison of simulation times with and without in situ eddy
analysis. Our implementation scales linearly with the simulation. The 15
km grid cell resolution is the eddy resolving case and we can see that
our eddy census takes relatively longer than 60 km and 30 km cases.

Plotting distributions as a function of latitude, in MPAS-Ocean, re-
veals patterns in eddy formation (see Figure 6). Eddy diameter is a
strong function of latitude, due to the local horizontal component of
the Coriolis force. At the equator, the Coriolis force is zero and no
eddies appear, while at high latitudes the Coriolis force is strong and
eddies are small. Generally, eddy diameter scales with the Rossby ra-
dius of deformation, which increases from pole to equator. Statistics
between -30° and 30° are noisy due to the small number of eddies
there. The baroclinic instability produces a particularly large number
of eddies in the Southern Ocean between -40° and -60°. These extend
to greater depths than eddies in other regions (compare to Figure 6 in
[28]).

Global eddy summary plots provide geographic information on
characteristics, which allow oceanographers to correlate eddies with
ocean currents and other features (Figure 7). Many eddies are created
by the “pinching off” of strong meandering currents, such as the Gulf
Stream in the North Atlantic, the Kuroshio Current in the North Pa-
cific, and the Agulhas retroflection south of Africa. These eddies are
numerous, large, and fast, but tend to occur in a narrow path along
the jet. Eddies also occur in large swaths of the Southern Ocean. The
fastest and deepest eddies occur in the Brazil–Malvinas Confluence
south of Brazil, and in the Antarctic Circumpolar Current south of
Australia (compare to Figure 4 in [28]). Equatorial regions and the
center of mid-latitude basins have very few eddies.

The results presented here are important to climate science because
of the long-ranging effects of eddies on the ocean. Yet a global eddy
census is extremely rare in climate studies because it requires a global,
high-resolution ocean model and high-frequency analysis. This work
informs oceanographers of the relationship between eddies, currents,
and bathymetry, and is a springboard to future studies on eddy trans-
ports and their interactions with a changing climate.

6 PERFORMANCE RESULTS

To create our performance studies, we ran on the “Wolf” supercom-
puter at Los Alamos National Laboratory. Wolf contains 616 nodes
with Intel Xeon E5-2670 processors (16 cores per node) and 64 GB
RAM per node. It uses a QLogic QDR InfiniBand network for its
interconnect and four scratch filesystems: two Panasas Parallel File
Systems and two Lustre Parallel File Systems, in which we used the
Panasas in our studies. For I/O, reading, and writing netCDF files
(the climate community file standard), MPAS-Ocean uses the PIO li-
brary developed by NCAR for the Community Earth System Model
(CESM), which is used by many climate models. Internally, PIO uses
Parallel netCDF (PnetCDF), which is jointly developed by Northwest-
ern University and Argonne National Laboratory. To perform our in
situ and post-processing studies, we used MPAS-Ocean in both cases
in forward mode and analysis mode, respectively.
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Fig. 9. Comparing total time-to-solution for eddy censuses in our in

situ implementation vs. our post-processing implementation. Top plot
is real, measured times, while bottom plot is projected times at 1-5 km
scale compared to real 15 km times.

We show the performance of MPAS-Ocean with daily eddy cen-
suses, over the course of one simulated year, via our in situ analysis.
This is compared to the time of the simulation without analysis, as seen
in Figure 8. The model is run with three different grid sizes, 60 km,
30 km, and 15 km grid cells, which in turn increase the computational
model cost by a factor of eight (four times in the horizontal resolution
and two times the frequency of time stepping.) With in situ eddy anal-
ysis, which incorporates the Okubo-Weiss calculation, thresholding,
connected components, and census calculation, we achieve the same
linear scalability as the simulation code, seen in Figure 10. The differ-
ence gap in the 15 km time (Figure 8), with respect to the simulation
and compared to 60 km and 30 km times, can be attributed to more
eddy components, discussed in more detail in Section 6.1.

In comparing the two workflows, the in situ case runs MPAS-Ocean
in forward mode, which calculates the model and performs eddy cen-
suses directly from simulation state. The post-processing case runs
MPAS-Ocean in forward mode first (model only), and then, writes its
simulation state to parallel file system storage. Next, MPAS-Ocean
analysis mode reads the state file (checkpoint restart) to calculate the
eddy censuses (analysis only, no model). Therefore, the increase in
time for post-processing is primarily due to three factors: 1) writing
the state, 2) reading the state, and 3) initializing the state prior to anal-
ysis. The last factor can be compared to a visualization tool reading
in a data set and configuring the data model (for example, reading an
HDF5 file and transforming it into a VTK data model).

The time difference between post-processing eddy censuses and our
in situ solution is drastically different, seen in the top plot of Figure 9.
In each case, the post-processing solution doesn’t scale and flattens
out to a constant time. In the 15 km case, we see an uptick in the
total time, as this is due to I/O subsystem, as we have hit the scaling
limits of our parallel file system (4k processors, shown by internal
testing via our supercomputer production support). Both times, for in

Fig. 10. In situ eddy analysis time (blue) relative to simulation time
(green). Eddy censuses are nearly constant out to 8k processors. The
relative time does increase slightly, as there is room for improvement in
our implementation.

Fig. 11. Percentage of time taken for the post-processing of daily eddy
censuses. Green is simulation, blue is eddy census, red is state write,
and orange is state read and initialization. As we scale out to 8k pro-
cessors, we see that I/O takes an increasing amount of time, where I/O
takes longer than it does to compute the day.

situ and post-processing, take into consideration the end-to-end time
to receive a daily eddy census, from running the simulation model and
calculating the census. We consider time-to-solution to be the total
time to get analysis results, because an analyst relies on images, plots,
and statistics to assess a model, not the raw simulation state.

If we project out to the 5 km and 1 km grid cell resolutions, seen
in the bottom plot of Figure 9, post-processing analysis becomes an
even more unlikely scenario. It would take 100 hours for the post-
processing solution to calculate daily eddy censuses. Climate studies
investigate long-term scenarios, such as 100 year time frames. This
means it would take 10,000 hours, at a minimum, because it can-
not scale-out; i.e, over one real-time year (approximately 400 days)
to calculate daily eddy censuses for 100 simulated years with a post-
processing workflow.

As alluded to previously, we have already reached the point in large-
scale simulations where it makes sense to re-run the model with ana-
lytics, if a scientist needs a new set of analyses, rather than doing post-
processing on the saved state. In Figure 11, at 8k processors, we could
re-run the model, with eddy censuses, approximately three to four ad-
ditional times in the same time that it takes to generate one set of eddy
censuses in a post-processing model. (Though, it is faster to save out
one, or several, state file(s) to do visualization parameter exploration,
then re-run the model once visualization and analysis parameters are
picked.) This “re-run the model” trend has been predicted, with other
in situ research and projects, like Cinema [3].
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Fig. 12. Relative weak scaling of eddy analysis methods. Percentage
time is shown, where green is simulation time, blue is eddy census,
red is state write, and orange is state read and initialization. Top plot
is post-processing, while the bottom plot is in situ. In situ takes more
relative time at 15 km, because eddy appearance grows faster than the
computational complexity of the simulation between 30 km and 15 km.

128, 60km 1024, 30km 8192, 15km
model + post-proc. 2.2 hours 2.7 hours 9.5 hours
model + in situ 1.6 hours 1.4 hours 2.2 hours

Fig. 13. Absolute weak scaling times of model plus eddy finding time.
These are the measured times over a simulated year. The increase of
time in post-processing is due to I/O, while the increase of time in in situ

is due to significantly more eddies.

6.1 Weak Scaling

In Figures 12 and 13, we show the weak scaling properties of the two
eddy analysis workflows. Between 60 km, 30 km, and 15 km grid cell
size, the simulation complexity increases by a factor of 8 (four times in
space and twice in time). This is roughly one order of magnitude, and
we increase the number of processing elements by 8. As was evident
before (top plot in Figure 12, and top row of Figure 13), I/O has poor
weak scaling properties as we scale the problem size and processors.

If we look at the in situ case (bottom plot in Figure 12, and bottom
row of Figure 13), it stands out that there is a jump in the relative eddy
census time going from 30 km to 15 km grid cell size. This was also
observed in the absolute time plots in Figure 8. While this may seem
problematic, it is easily explained. This is due to that eddies “appear”
in the model at the 15 km case, while they are not significantly present
in the 30 km case. Therefore, the 15 km eddy census calculation has
2 orders of magnitude more work to do, compared to the 30 km eddy
census, while the simulation grid complexity has only increased by 1
order of magnitude (a factor of 8).

6.2 Eddy Visualization

We have also studied the scalability of generating images directly from
the Okubo-Weiss fields and other variables in the MPAS-Ocean model.

Fig. 14. Generating eddy images with ParaView Catalyst attached to
both our in situ and post-processing analysis. Images are generated at
two frequencies, 5 per day and 5 every 5 days. In situ image generation
is faster than post-processing at both frequencies. Though, image gen-
eration is not scaling as well as we would like it to, and the performance
scalability needs to be investigated further.

Figure 14 shows image generation via ParaView Catalyst [9], which
has been attached to both MPAS-Ocean forward mode and analysis
mode. In both cases, we generate 5 images at two frequencies, daily
images and images every 5 days.

As is expected, in situ image generation performs better than post-
processing, but the excellent strong scaling stops in this experiment
after 2048 cores. We believe this is due to the sort-last compositing
used to generate imagery, which has been shown to have flat strong
scaling at best on a well-tuned, dedicated and optimized system [21].
We ran our tests on a heavily utilized commodity cluster with an In-
finiBand network. This is not problematic for eddy analysis as only
a few images are needed for verification and/or debugging. The sci-
ence need is in the census itself, which does not require high frequency
image production.

7 CONCLUSION

We conclude with a personal testimony on the advantages of in situ
analysis. One of the authors was involved in a previous global eddy
study using post-processing tools. He reports, “The performance num-
bers show the advantages of smaller file sizes and faster compute times
for in situ analysis. But in the end, post-processing is such a headache
for the analyst, that every new idea seemed like a burden. The in situ
analysis for this study was so simple by comparison that I was creating
final plots just a few minutes after the simulations were done. In situ
analysis made my work feel easy.”

An in situ eddy analysis workflow enables scalable analysis at large
spatial grids and temporal frequencies that is not possible with the
traditional climate post-processing. This improves assessments of cli-
mate change simulations used to inform policy makers. Our case-study
indicates that the predicted trend of “re-running” the simulation for
new analysis results, due to in situ analysis performance scalability
over post-processing analysis, is present today. Therefore, scalable
simulation codes need to make the transition to a bulk in situ analysis
workflow, with post-processing methods saved for spot-check verifi-
cation and debugging.

Secondly, we advocate a cultural shift to model and analysis co-
design for scientific research and development. This involves integrat-
ing the simulation and model development team with the visualization
and analysis team, to draw upon both sets of expertise. We believe
this has scientific benefits over the post-processing model and separa-
tion of capabilities, creating a sum greater than its parts, at the cost
of higher startup time and development time through iteration. The
benefits for the analysis comes from generating higher quality and re-
producible code, due to being subjected to the same development stan-
dards as the simulation code: collaborative development and external
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peer-review via a preliminary requirements and design review, docu-
mentation, code review, testing, and public release.
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